许轻舟和他的十几名学生纷纷围拢在高原身边,各自搬来椅子坐下,形成一个小圈。
目光扫过众人,高原笑着说道:目前全世界在发热纤维领域,一共有五条发展路线。
首先是远红外纤维,通过在纤维材料中融入氧化铝,氧化镁,氧化锆,或者二氧化钛,二氧化硅等等,提高对阳光等外界红外线的吸收,从而起到储热保温效果,简单来说呢,就是吸收自然界的热量。
在这个领域里,我们的日本同行处于绝对领先地位,日本钟纺合纤的ceramino技术,小松精练的dynalive,富士纺的inserared,可乐丽的lonwave,已经占据全球几乎所有市场份额。
其次是近红外纤维,原理方面也是吸收自然界的光热,而居于统治地位的同样是日本企业,尤尼吉可的thermotron,三菱人造丝的thermocatch,再加上东丽的torayheat。
因为三大近红外纤维都是以字母t开头,所以也被称为3t,世面上所有打着远红外或者近红外名义的产品,无论他是华夏品牌还是法国品牌,消费者最终买到手,其实全部是日本纤维。
高原说到这里,房间里传来一阵叹气声。
百姓们只知道腈纶,氨纶之类的普通化纤产品,不错,这些普通化纤我国能造,而且产量巨大。
但那些位于金字塔顶端,最赚钱,科技含量最高的产品,却是日韩欧美的天下,它们产品数量之多,品质之高,简直让国内搞化纤的同学们感到绝望。
第三个是电发热,通过导电纤维和内置能源产生热量,这项技术上限是很高的,将来有可能挑战零下一百度左右超低温。
然而可惜的是,它有一个前置科技树目前还没有被点亮,那就是大规模石墨烯制备技术,没有石墨烯技术的电发热,效率实在太低了,所以不在我们考虑范围之内。
对此,同学们纷纷点头同意。
其实大规模石墨烯制备技术要是真的出来,何止解决发热纤维的问题,材料学领域目前的大多数问题,全都可以一蹴而就!
这就是基础学科强大的魔力!
只要一项基础研究做出来,受益的将是整个世界!
第四个是相变调温技术。高原语速很快,继续说道:利用物质相态转变时吸收或放出热量的原理,在环境温度较高时吸热,然后在环境温度较低时放热。
这个技术难度和成本都是比较高的,目前只有一家公司领先,德国奥特海姆集团在北美注册生产的outlast纤维,我仔细研究过,相变调温技术这条路应该走不通,大家知道就好了,不要去在意它。
下面重点来了,发热纤维领域的第五大技术路线,吸湿发热纤维技术,它是最接近大自然的技术,例如众所周知的羊毛纤维,就是典型的吸湿发热,当羊毛遇到湿气的时候,纤维分子和水分子相互吸引结合,水分子动能迅速降低,被转化为热能释放出来。
每到冬天,我们都喜欢穿毛衣,觉得毛衣比较保暖,什么原因?
就是因为羊毛纤维的吸湿发热特性,它能够神奇的吸收身体湿气,转化为热能。
然而不幸的是,在吸湿发热纤维这个领域里,居于领先地位的依旧是日本公司,日本东洋纺开发的eks纤维,在温度二十摄氏度,相对湿度百分之六十五的条件下,吸湿能力可以达到棉纯棉的三点五倍,吸放热量是羊毛的整整两倍!
除了eks纤维,日本东洋纺还有更高端的n38产品线,日本东丽的softwarm纤维,warmsensor纤维,日本旭化成的thermogear纤维,日本三菱化学的renaissα纤维,也都位列全球顶级。
我勒个去!
怎么到处都有小日本!?
这是大家听完高原这番话后最大的感触。
抛开前置技能树没点亮的,以及被认为发展潜力不大的两条路线,剩下三大技术路线,无论朝哪个方向走,都会遇到来自日本的强大竞争对手。
而且这些日本对手并不是一个两个,而是一群一群,一堆一堆,数量巨多。